Using Long Short-Term Memory Recurrent Neural Network in Land Cover Classification on Landsat and Cropland Data Layer time series

Land cover maps are significant in the agricultural analysis. However, the existing workflow of producing maps takes too long. This work builds long short-term memory (LSTM) recurrent neural network (RNN) model to improve the update frequency. An end-to-end framework is proposed to train the model. Landsat scenes are used as Earth observations. Field-measured data and CDL (Cropland Data Layer) are used as ground truth. The network is deeply trained using state-of-the-art techniques. Finally, we tested the network on multiple Landsat images to produce five-class land cover maps with timestamps. The results are visualized and compared with CDL and ground truth. The experiment shows a satisfactory overall accuracy (>97%) and proves the feasibility of the model. This study paves a path to efficiently using LSTM RNN in remote sensing image classification.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s